School of Economics Doctoral Programme in Economics Probability and statistics Written examination February 13th, 2020

NAME AND SURNAME: _____

ID:

INSTRUCTIONS

Read the problems carefull before staring your work. There are four problems. You can have a sheet with formulae and a mathematical handbook. Write your solutions on the paper provided. You have two hours.

Problem	a.	b.	c.	d.	
1.			•	•	/
2.			•	•	
3.			•	•	
4.			•	•	
Total			\mathcal{O}		

1. (25) For sampling purposes a population of size N is divided into K strata of sizes N_1, N_2, \ldots, N_K . Let μ and σ^2 be the population mean and the population variance. For $i = 1, 2, \ldots, K$ let μ_i and σ_i^2 be the population means and the population variances for individual strata. Assume that a stratified sample is selected such that the sample sizes for individual strata are n_i for $i = 1, 2, \ldots, K$. Denote $w_i = N_i/N$ for $i = 1, 2, \ldots, K$.

a. (10) Let \bar{Y}_i be the sample mean for the *i*-th stratum. Let \bar{Y} be the unbiased estimator of the population mean

$$\bar{Y} = \sum_{i=1}^{K} w_i \bar{Y}_i$$

Show that

$$E\left[(\bar{Y}_i - \bar{Y})^2\right] = \operatorname{var}(\bar{Y}_i) + \mu_i^2 + \operatorname{var}(\bar{Y}) + \mu^2 - 2\sum_{j=1}^K \left(w_j \mu_i \mu_j\right) - 2w_i \operatorname{var}(\bar{Y}_i).$$

Solution: Compute

$$E\left[\left(\bar{Y}_{i} - \bar{Y}\right)^{2}\right] = E(\bar{Y}_{i}^{2} - 2\bar{Y}_{i}\bar{Y} + \bar{Y}^{2})$$

= $\operatorname{var}(\bar{Y}_{i}) + \mu_{i}^{2} + \operatorname{var}(\bar{Y}) + \mu^{2} - 2E(\bar{Y}_{i}\bar{Y})$

By independence of $\bar{Y}_1, \bar{Y}_2, \ldots, \bar{Y}_K$ we get

$$E(\bar{Y}_{i}\bar{Y}) = \sum_{j=1}^{K} w_{j}E(\bar{Y}_{i}\bar{Y}_{j})$$

$$= \sum_{j=1, j \neq i}^{K} w_{j}\mu_{i}\mu_{j} + w_{i}E(\bar{Y}_{i}^{2})$$

$$= \sum_{j=1, j \neq i}^{K} w_{j}\mu_{i}\mu_{j} + w_{i}(\operatorname{var}(\bar{Y}_{i}) + \mu_{i}^{2})$$

$$= \sum_{j=1}^{K} \left(w_{j}\mu_{i}\mu_{j}\right) + w_{i}\operatorname{var}(\bar{Y}_{i}).$$

b. (15) Let

$$\gamma = \sum_{i=1}^{K} w_i (\mu_i - \mu)^2 = \sum_{i=1}^{K} w_i \mu_i^2 - \mu^2.$$

Let

$$\hat{\gamma} = \sum_{i=1}^{K} w_i (\bar{Y}_i - \bar{Y})^2 \,.$$

be an estimator of γ . Modify this estimator to make it an unbiased estimator of γ .

Solution: We compute

$$\begin{split} E(\hat{\gamma}) &= \sum_{i=1}^{K} w_i E\left(\bar{Y}_i - \bar{Y}\right)^2 \\ &= \sum_{i=1}^{K} w_i \left(\operatorname{var}(\bar{Y}_i) + \mu_i^2 + \operatorname{var}(\bar{Y}) + \mu^2 - 2\left(\sum_{j=1}^{K} (w_j \mu_i \mu_j) + w_i \operatorname{var}(\bar{Y}_i)\right) \right) \\ &= \sum_{i=1}^{K} w_i \operatorname{var}(\bar{Y}_i) + \sum_{i=1}^{K} w_i \mu_i^2 + \operatorname{var}(\bar{Y}) + \mu^2 - \\ &- 2 \operatorname{var}(\bar{Y}) - 2 \sum_{i=1}^{K} \sum_{j=1}^{K} w_i w_j \mu_i \mu_j \\ &= \sum_{i=1}^{K} w_i \operatorname{var}(\bar{Y}_i) + \sum_{i=1}^{K} w_i \mu_i^2 + \operatorname{var}(\bar{Y}) + \mu^2 - 2\operatorname{var}(\bar{Y}) - 2\mu^2 \\ &= \gamma + \sum_{i=1}^{K} w_i \operatorname{var}(\bar{Y}_i) - \operatorname{var}(\bar{Y}) \,. \end{split}$$

Both additional terms in the expectation can be estimated in an unbiased way. Subtracting these unbiased estimates from $\hat{\gamma}$ gives an unbiased estimate of γ . **2.** (25) The Pareto distribution has the density

$$f(x, \alpha, \lambda) = \frac{\alpha \lambda^{\alpha}}{(\lambda + x)^{\alpha + 1}}$$

for x > 0 where $\alpha, \lambda > 0$. Assume the data x_1, x_2, \ldots, x_n are an i.i.d. sample from the Pareto distribution.

a. (10) Write down the equations for the maximum likelihood estimates of the parameters α and λ .

Solution: The log-likelihood function is

$$l(\mathbf{x}, \alpha, \lambda) = n \log(\alpha) + n\alpha \log(\lambda) - (\alpha + 1) \sum_{i=1}^{n} \log(\lambda + x_i).$$

Equate partial derivatives to 0 to get the equations

$$\frac{\frac{\partial l(\mathbf{x},\alpha,\lambda)}{\partial \alpha}}{\frac{\partial \alpha}{\partial \lambda}} = \frac{n}{\alpha} + n \log(\lambda) - \sum_{i=1}^{n} \log(\lambda + x_i) = 0$$
$$\frac{\frac{\partial l(\mathbf{x},\alpha,\lambda)}{\partial \lambda}}{\frac{\partial \lambda}{\partial \lambda}} = \frac{n\alpha}{\lambda} - (\alpha + 1) \sum_{i=1}^{n} \frac{1}{\lambda + x_i} = 0.$$

b. (15) Compute the approximate standard error of the maximum likelihood estimator $\hat{\alpha}$.

Solution: The second partial derivatives of the density are

$$\begin{array}{rcl} \frac{\partial^2 l(x,\alpha,\lambda)}{\partial \alpha^2} & = & -\frac{1}{\alpha^2} \\ \frac{\partial^2 l(x,\alpha,\lambda)}{\partial \lambda^2} & = & -\frac{\alpha}{\lambda^2} + \frac{\alpha+1}{(\lambda+x)^2} \\ \frac{\partial^2 l(x,\alpha,\lambda)}{\partial \alpha \partial \lambda} & = & \frac{x}{\lambda(\lambda+x)} \,. \end{array}$$

Integrating we get

$$I(\alpha, \lambda) = \begin{pmatrix} \frac{1}{\alpha^2} & -\frac{1}{\lambda(\alpha+1)} \\ -\frac{1}{\lambda(\alpha+1)} & \frac{\alpha}{\lambda^2(\alpha+2)} \end{pmatrix}$$

The approximate standard error is

$$se(\hat{\alpha}) = \frac{1}{\sqrt{n}}\sqrt{I_{11}^{-1}}\,,$$

where I_{11}^{-1} is the element in the upper left corner of the inverse $I^{-1}(\alpha, \lambda)$.

3. (25) Assume the data x_1, x_2, \ldots, x_n are an i.i.d.sample from the normal distribution. Assume the parameter σ^2 is known. We test $H_0: \mu = 0$ versus $H_1: \mu \neq 0$.

- a. (10) The null-hypothesis H_0 with a given confidence level α can be tested in two ways:
 - H_0 is rejected if $|\bar{X}| > c$ for the value c such that the probability of Type I error if H_0 holds is α .
 - Estimate μ and set up a $(1-\alpha)$ -confidence interval as $\bar{x} \pm z_{(1-\alpha)/2} \cdot \frac{\sigma}{\sqrt{n}}$ where

$$P(-z_{(1-\alpha)/2} \le Z \le z_{(1-\alpha)/2}) = 1 - \alpha$$

fro $Z \sim N(0, 1)$. If the interval does not contain 0 reject H_0 .

Are the two tests equal? Explain.

Solution: Yes, the two tests are the same since σ^2 is known.

b. (15) Compute the likelihood ratio tests statistics for the testing situation described above. What is the distribution of λ ? Is the likelihood ratio test exact? Explain.

Solution: The computation of Λ gives

$$\Lambda = \exp\left(\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2 - x_i^2}{2\sigma^2}\right) .$$
$$\Lambda = \exp\left(-\frac{n\bar{x}^2}{2\sigma^2}\right) .$$

Since σ^2 is known H_0 is rejected if $|\bar{x}| > c$ for a suitable c. The distribution of the test statistic under H_0 is exactly $\chi^2(1)$. The test is exact.

4. (25) The model for the data is described by two sets of regression equations

$$Y_i = \alpha_1 + \beta x_i + \epsilon_i$$

for i = 1, 2, ..., m and

$$Z_j = \alpha_2 + \beta w_j + \eta_j$$

for j = 1, 2, ..., n. For both sets of equations the standard linear regression assumptions hold. This means for all i, j we have $E(\epsilon_i) = E(\eta_j) = 0$, $var(\epsilon_i) = \sigma^2$ and $var(\eta_i) = \tau^2$, and all ϵ_i and η_j are uncorrelated. Further assume that

$$\sum_{i=1}^{m} x_i = 0$$
 in $\sum_{j=1}^{n} w_j = 0$

 ter

$$\sum_{i=1}^{m} x_i^2 = 1 \quad \text{in} \quad \sum_{j=1}^{n} w_j^2 = 1.$$

a. (10) Give an unbiased estimate of β based on all the data. What is the standard error of your estimate?

Solution: The two sets of equations are combined into one.

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_m \\ Z_1 \\ Z_2 \\ \vdots \\ Z_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & x_1 \\ 1 & 0 & x_2 \\ \vdots & \vdots & \vdots \\ 1 & 0 & x_m \\ 0 & 1 & w_1 \\ 0 & 1 & w_2 \\ \vdots & \vdots & \vdots \\ 0 & 1 & w_n \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \beta \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \\ \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}$$

Under the assumptions the OLS estimator of β is unbiased. We compute

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} m & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & 2 \end{pmatrix} \,.$$

The inverse is

$$\left(\mathbf{X}^T \mathbf{X}\right)^{-1} = \begin{pmatrix} 1/m & 0 & 0\\ 0 & 1/n & 0\\ 0 & 0 & 1/2 \end{pmatrix}$$
.

We have

$$\mathbf{X}^T \mathbf{Y} = \begin{pmatrix} \sum_{i=1}^m Y_i \\ \sum_{j=1}^n Z_j \\ \sum_{i=1}^m x_i Y_i + \sum_{j=1}^n w_j Z_j \end{pmatrix} \,.$$

It follows that

$$\hat{\beta} = \frac{1}{2} \left(\sum_{i=1}^m x_i Y_i + \sum_{j=1}^n w_j Z_j \right) \,.$$

The standard error is

$$\operatorname{se}(\hat{\beta}) = \frac{\sqrt{\sigma^2 + \tau^2}}{2}.$$

b. (15) Assume that $\sigma^2/\tau^2 = \lambda$ for known $\lambda > 0$. Compute the best unbiased linear estimate of β . What is its standard error?

Solution: If we multiply the second set of equations by $\sqrt{\lambda}$ and denote

$$\tilde{Z}_j = \sqrt{\lambda} Z_j, \quad \tilde{\alpha}_2 = \sqrt{\lambda} \alpha_2, \quad \tilde{w}_j = \sqrt{\lambda} w_j \quad and \quad \tilde{\eta}_j = \sqrt{\lambda} \eta_j$$

for j = 1, 2, ..., n and combine the two sets of equations into one we get the standard regression model. In this case the OLS estimator is the best unbiased linear estimator of β . However, the matrix **X** changes and we get

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 + \lambda \end{pmatrix} \,.$$

and

$$\mathbf{X}^T \mathbf{Y} = \begin{pmatrix} \sum_{i=1}^m Y_i \\ \sum_{j=1}^n \tilde{Z}_j \\ \sum_{i=1}^m x_i Y_i + \sum_{j=1}^n \tilde{w}_j \tilde{Z}_j \end{pmatrix} \,.$$

It follows

$$\hat{\beta} = \frac{1}{1+\lambda} \left(\sum_{i=1}^{m} x_i Y_i + \sum_{j=1}^{n} \tilde{w}_j \tilde{Z}_j \right) \,.$$

The standard error is compute directly as

$$\operatorname{se}(\hat{\beta}) = \frac{\sigma}{\sqrt{1+\lambda}}.$$