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Avoiding Statistical Pitfalls

Christopher Chatfie}d

Abstract. In many real-life problems, avoiding trouble can be at least as
important as achieving optimality and is a necessary precondition any-
way. Some guidelines are suggested for avoiding pitfalls throughout a
statistical investigation. A range of real-life examples is presented to
show how difficulties can arise in practice and how they may be over-
come. These examples are unlike the idealized and sanitized illustra-
tions that typically appear in the literature.
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1. PRELUDE

Imagine the following scenario. You have been
called in as consultant to advise on a discriminant
analysis of a large set of data. There are observa-
tions on 20 variables for each of several thousand
customers who have been partitioned into four
groups, depending on whether or not they have
taken advantage of certain financial facilities. The
objective is to find which variables are the best
indicators for distinguishing between the groups,
although the exact details need not concern us
here. You have not been involved in collecting (or
rather assembling) the data, which you are assured
is a systematic 1 in 20 sample of all the company’s
customers. The latter are held in a large database
organized by the computer section (rather than by
statisticians). Time is pressing (they want the re-
sults yesterday!) and so (unwisely and perhaps un-
consciously) you choose to cut a few corners during
the initial data analysis.

Nevertheless you do look at the correlation ma-
trix of the variables and discover, to your horror,
that there is an off-diagonal value of 1.000000!
Has one variable been erroneously duplicated? No,
because a quick check of the first few values in the
two data columns shows that they are not the
same. Could one variable be a linear combination
of the other? No, because the two suspect variables
have different correlations with the other vari-
ables. Could the computer program be wrong? No,
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SPSS can surely be trusted to calculate a correla-
tion correctly. So what is going on?

You next check the histogram of each variable
(which you should have done in the first place!) and
find to your dismay that there is a small bunch
of exceptionally extreme values recorded as
999,999,999 for both variables. Subsequent en-
quiries show that this is the (ridiculous) default
value for missing observations and that the two
variables concerned are such that, when one (un-
usually) is missing, then so is the other. However,
the “small” number of duplicated default values. is
enough to produce the apparently “perfect” corre-
lation. You hastily exclude extreme values out-
side a sensible allowable range and then proceed
with the analysis, congratulating yourself that
you spotted the problem in time.

No doubt there will be some readers who do not
customarily face such situations, but they are likely
to be people in an academic environment who do
not face deadlines with messy data. For the rest of
us (including many academics), the above story
may sound all too familiar. It is therefore sensible

* to ask what lessons can be learned from such real-

240

life dramas, and what steps can be taken to guard
against such eventualities. Clearly some general
guidelines are desirable.

2. INTRODUCTION

Most real-life statistical problems have one or
more nonstandard features. There are no rou-
tine statistical questions; only questionable
statistical routines [D. R. Cox]

Many statistical pitfalls lie in wait for the un-
wary. Indeed, statistics is perhaps more open to
misuse than any other subject, particularly by the
nonspecialist. The misleading average, the graph
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with “fiddled” axes, the inappropriate P-value and
the linear regression fitted to nonlinear data are
just four examples of horror stories which are part
of statistical folklore and will not be considered
here (for “popular” treatments, see, for example,
Huff, 1954; Reichmann, 1964; Hooke, 1983). Now-
adays, with the aid of computer software, the
nonspecialist can commit a much wider range
of offences, which I shall not attempt to list, al-
though I think particularly of multiple regressions
with an excessive number of predictor variables
and of inappropriate factor analyses. However, this
article is primarily concerned with the avoidance of
mistakes by the specialist statistician.

Given the importance of the topic, avoiding trou-
ble has been arguably neglected in the literature.
Statistical journals tend to concentrate on develop-
ing the methodology of ever-more complicated
techniques, which, while important, needs to be
complemented by an ability to recognize when and
how to implement such techniques, and to know
why things are done and what the results mean.
Thus, general strategy, which should include the
avoidance of trouble, is at least as important as
knowing the details of specific techniques. Unfortu-
nately statistics textbooks also tend to concentrate
on techniques. The few relevant references on
strategy include Cox and Snell (1981), Chatfield
(1988), Preece (1987) and a series of papers by
Hand (e.g., 1990). The latter are more concerned
with the development of expert systems but are also
relevant to assessing how a statistician should ap-
proach statistical problems. Understanding how a
statistician thinks is at least as important as un-
derstanding how a computer can act as an expert
system, and the two can learn from each other!

In addition to concentrating on techniques at the
expense of strategy, textbooks also typically con-
centrate on optimal procedures for collecting and
analyzing data under somewhat idealized condi-
tions. With a single, clearly defined objective (e.g.,
in most sequential clinical trials), optimality can be
very important. However many real-life problems
fail to resemble those in textbooks for a variety of
reasons, including the presence of messy data and
the absence of a single clear objective. While some
investigations regrettably have no clear objective,
many others (e.g., most surveys) are multi-purpose
and then it may not be possible to achieve simulta-
neous optimality for each objective. In any case,
optimality properties usually depend on a paramet-
ric model that will itself depend on certain assump-
tions that are unlikely to be satisfied exactly and
may be seriously in error. This suggests that the
statistician should be more concerned with finding
a safe, robust and practical solution to a given

problem. In particular, biases and errors can arise
in all sorts of ways and the statistician must be on
the lookout for problems and take positive steps to
avoid trouble. Problems include not only making
mistakes of many types but also going up blind
alleys and unnecessarily repeating work already
done by others.

To some extent, avoiding trouble is a bit like
avoiding road accidents when driving a car. As you
gain experience, you are increasingly able to sense
situations where danger will be lurking and take
appropriate defensive action. Thus experience is
the real teacher. However, some brief general
guidelines could be helpful, particularly for the less
experienced practitioner, and Section 3 attempts to
provide these.

3. GENERAL GUIDELINES

For convenience, we divide advice into sections
corresponding to the four main stages of a typical
statistical investigation. Much of the advice may be
regarded as “obvious commonsense,” but common-
sense is not as common as might be expected! Some
of the points are expanded in Chatfield (1988, Part
I), and some are illustrated by examples. Much
of the advice comes under the heading of “good
statistical practice” (Preece, 1987) and consists
of making routine checks and taking reasonable
precautions.

3.1 Formulating the Problem

It is sad that many investigations are carried out
with no clear idea of the objective. This is a recipe
for disaster or at least for an error of the third kind,
namely “giving the right answer to the wrong
question.” Kimball (1957) gives several instructive
examples of this type of error, although, as he
points out, only errors of the third kind that be-
come known can be corrected, and there may be
many that we never know about. Clearly “thinking
around” the problem and formulating a clear plan
are essential. Problem formulation may involve
asking questions (see below) or carrying out appro-
priate desk research in order to get the necessary
background information and check the physical
and/or statistical aspects of the problem. There
should also be a check on any prior knowledge,
particularly when similar sets of data have been
analyzed before and the problem is not to fit a
model from scratch but to see if the new data are
compatible with earlier results. It is sad that many
studies end up “re-inventing the wheel.” Cost
constraints also need to be considered and, if
necessary, critically reviewed. Many projects are
underfunded as well as underplanned, and it may
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be necessary to say that targets are unattainable
with the resources provided. For example, some
surveys have over-ambitious objectives given the
possible sample size. Generally speaking, problem
formulation is too often either neglected completely
or the required time is grossly underestimated.

While sometimes in charge, the statistician is
more likely to be advising, collaborating with or
providing consultancy advice to nonstatisticians,
and there are many potential difficulties and dan-
gers involved in this (e.g., see Hand and Everitt,
1987). In addition to the advice listed by Chatfield
(1988, page 68), I would add the following. (a) If
data have already been collected, always ask to see
them (see Example 1) and find out exactly how they
were collected. (b) Try to avoid answering ques-
tions over the telephone. The most important gen-
eral piece of advice is to ask lots of questions (see
Example 5 in Section 4) and to be persistent where
necessary. Most statisticians are all too familiar
with conversations which start:

Q: What is the purpose of your analysis?

A: I want to do a significance test.

Q: No, I mean what is the overall objective?

A (with puzzled look): I want to know if my

results are significant.

Andsoon....

ExaMpLE 1. Asking to See the Data. Asking
questions is particularly important in avoiding
catastrophes with “the scientist who knows what
he wants.” Dr. X, from our Chemistry department,
asked for “5 minutes” of my time, to answer a
“simple” question about regression. He had fitted a
straight line to some data and wanted to know the
formula for calculating the standard error of the
intercept. His knowledge of regression was clearly
nontrivial, but even so I asked to see the data first
(I always do). The scatter plot revealed a relation-
ship that was clearly curvilinear over at least part

of the range. However Dr. X assured me that "

“chemists always fit straight lines to this sort of
data.” I pointed out that this was unwise and that
if the point estimate of the intercept was biased,
then there was little point in calculating its stand-
ard error under inappropriate assumptions. In a
similar vein, Barnett (1987) describes three case
studies that began with a “simple” request to help
fit a straight line to some data but that turned out
to be far more complicated.

Another colleague who ‘“knew what he wanted”
was Dr. Y from the Social Sciences department. He
simply wanted to know the formula for carrying
out a chi-squared goodness-of-fit test on a two-way
table and did not want to bother me with doing the
actual analysis. Nevertheless I asked to see the

data and found that he had already committed the
common cardinal sin of converting the observed
frequencies to percentages!

To overcome students’ natural (?) reluctance to
ask questions, I have tried setting projects that are
deliberately incomplete or partially wrong, as often
happens in real life. Another instructive exercise is
to ask students what is the average of the two
numbers 10 and 350 (Hand and Everitt, 1987, page
4). Most will look suspicious, but say 180. Only a
few quick-witted students will respond with the
correct answer, which is not an answer at all but
rather another question, namely “What are the
numbers?”’ (you should never analyze ‘“‘numbers,”
but rather data on known variables). On being told
that the observations are phase angles, so that
350° corresponds to —10°, it becomes obvious that
the more meaningful average is zero degrees.

The other major aspect of problem formulation is
to decide how to collect the data or, if they have
already been collected, to rigorously assess the pro-
cedure that has been used. This will be considered
in the next section.

3.2 Collecting the Data

Statistics courses traditionally concentrate on
data analysis. In practice, data collection is at least
as important, because poor data cannot necessarily
be rescued by a “fancy’ analysis. Thus, consultants
and data analysts need to pay more attention to
designing a “good” collection method as an essen-
tial element of any scientific investigation. For
example, a common experience in advising on
clinical trials is to find that one has to start by
re-designing the protocol.

In an ideal world, the statistician might hope to
have complete control over the data-collection proc-
ess so as to ensure that the general principles of
good experimental design and good survey practice
are followed. In practice, this may not be possible
for a variety of good or not-so-good reasons. Data
are usually collected by staff with little or no statis-
tical expertise, and the collection process may be
subject to a variety of practical constraints. If, in
addition, the data have been collected without the
advice of a statistician, then the data may be sus-
pect or even worthless. Many pitfalls are associated
with not finding our exactly how such data were
collected and with applying statistical procedures
based on incorrect assumptions about the data-
collection method.

Bad data may also arise due to poor recording
techniques (see Example 2). This may be revealed
during the initial examination of the data (see
Section 3.3).
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ExampLE 2. A Suspect Recording Procedure. This
example illustrates the difficulties that can arise in
recording measurements in real life. A scientist
wanted a function to predict the conductivity of a
copper sulphate solution. A composite experiment
(a full two-level factorial augmented with axial and
central points) was designed with three control
variables, namely CuSO, concentration, H,SO,
concentration and temperature. The results were
collected, and a full quadratic model was fitted
using least-squares regression analysis. An almost
perfect fit was expected, but in fact only about 10%
of the variation was explained by the fitted model.
The scientist then complained to a statistician that
there must be something wrong with the regression
package.

The statistician questioned the scientist carefully
and found that the observations had been collected,
not by the scientist himself, but by a technician
who was thought to be reliable. The experiment
consisted of making up solutions in beakers, which
were put onto temperature control pads. When they
reached the design temperature, a conductivity
probe was held in each beaker and a reading was
taken from a digital panel. The statistician asked
for the experiment to be repeated so that he could
see exactly how the observations were taken. Two
problems were soon spotted. Sometimes the probe
(held by the technician) touched the side or bottom
of the beaker and sometimes it was immersed by
only about one centimeter. Secondly, the digital
readout took about 15 seconds to settle to a stable
value, (the probe required diffusion of the solution
through a membrane), but the technician often
didn’t wait that long. The statistician therefore
made two recommendations, neither of which
was ‘“‘statistical.” First, the probe should be fixed
in a clamp so that it always went to the same
depth. Second, a timer should be used so that the
conductivity wasn’t read until 30 seconds after
immersion.

The whole experiment was repeated in less than
one hour, the regression analysis in 10 minutes,
and this resulted in a 99% fit!

The different aims of achieving optimality and
avoiding trouble are well illustrated by the prob-
lems involved in survey design. The literature de-
votes much attention to optimal allocation so as to
minimize the variance of a sample estimate subject
to a cost constraint. Most of this theory ignores the
multipurpose, multivariate nature of most surveys
and may also disregard nonsampling errors, which
are usually at least as important as sampling
errors. In real life, a survey must be practical,
simple, flexible and robust, and factors such as
administrative convenience and cost may take

precedence over theoretical considerations. The
term proximum, rather than optimum, has been
suggested (O’Muircheartaigh, 1977) for describing
a design that in some sense aspires to “approxi-
mate optimality” while also being practical.

The general principles of good survey design will
not be repeated here (Moser and Kalton, 1971, is
still as good a reference as any). There are many
pitfalls associated with questionnaire design
(Schuman and Presser, 1981, is helpful) and it is
essential to check that questions are fair (not al-
ways easy to assess) and have been pilot tested.
Checks should also be made that (a) the sample is
representative and of a suitable size (see Example
3), (b) interviewer bias is reduced as far as possible
and (c) the data have been coded and processed
accurately. Quite apart from the nonresponse prob-
lem, many sampling procedures do not in fact give
every member of a population an equal chance of
being selected even when the sample does appear
“random” (e.g., see Huff, 1954, Chapter 1). A final
precaution worth mentioning here when using sur-
vey data, particularly official statistics, is that it is
advisable to check the comparability of information
drawn from different sources, and even from within
a single source.

ExamPLE 3. Three Unrepresentative Samples.
(a) The Prelude data set (Section 1), used to high-
light coding problems arising with missing observa-
tions, was later found to be faulty in another way.
We were told that a 1 in 20 systematic sample had
been taken from the population data base by the
computer staff who were handling it. (Although
nonrandom, a systematic sample can be expected to
be reasonably representative here given that there
is no cyclic behavior in the storage of customer
details.) Subsequent checks revealed that the data
base was stored on several different tapes because
of its enormous size and that one tape, comprising
all the customers from the north of England, had
been missed completely! It would be nice to report
that the “missing” tape came to light as a result of
systematic checks. In fact, it was partly due to good -
fortune that the problem was noticed when the
customers were partitioned by their home address
area.

(b) A company wanted to carry out a statistical
analysis of a small “random” sample of its clients.
The selected sample comprised everyone whose sur-
name began with the letter “V”’. This sample was
selected, not by the computing staff, but by a man-
agement consultant with access to the data base.
The choice was made solely on the grounds of com-
puting convenience on the mistaken assumption
that the alphabetical order of surnames is somehow
random. In fact, this appalling choice effectively
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excludes all Scots and Welshmen, for example. For-
tunately the deficiency was easily spotted by the
statistician who was asked to analyze the data. As
in (a) above, it emphasises the importance of check-
ing exactly how a computer sample was selected.

(¢) When Puerto Rico was hit by a recent hurri-
cane, there were 10,000 claims by residents for
hurricane damage. The U.S. government decided to
base its total grant aid by finding the total of
claims in the first 100 applications and then multi-
plying by 100. A colleague was involved in the
difficult task of persuading the U.S. government
that the first 100 applications need not necessarily
constitute a representative sample! The grant aid
was eventually increased.

There are also many pitfalls in designing experi-
ments. Example 4 presents brief notes on some
experimental designs that “went wrong” for one
reason or another, while Andersen (1990) presents
an alarmingly diverse selection of dubious clinical
trials. Always check the following.

(a) Randomization should be incorporated cor-
rectly in the design. Randomization is the only safe
way to overcome the effects of unforeseen nuisance
factors, but when randomization is left to the client
it is often carried out wrongly. In complicated facto-
rial experiments, it is tempting to randomize levels
of each treatment factor separately, instead of
randomizing the whole design. In a regression ex-
periment with one explanatory variable, where ob-
servations have to be taken sequentially, the order
of the tests is often taken in the “natural” order
determined by the increasing values of the explana-
tory variable. Then the effect of the explanatory
variable is confounded with time.

(b) Treatments of interest should be able to be
estimated in an unbiased way, and these estimates
should be capable of a unique interpretation. In
particular, Example 4(f) illustrates the problem of
pseudoreplication.

(c) Potentially important interactions must be
able to be estimated.

(d) There should be enough degrees of freedom to
estimate the error term adequately. The dangers
of saturated designs in Taguchi methods are
highlighted by Bissell (1989).

(e) Check that the people carrying out the exper-
iment know exactly what to do (see Example 4a).
There is no point in devising a brilliant design if it
is wrongly implemented. For example, every field
plan should have a compass indication of North!

(f) The design must take account of the given
practical situation (see Examples 4b to e).

ExamPLE 4. Some Faulty Experimental Designs.
(a) In a particular field experiment, the treatments
had to be applied on two separate occasions, but the

field worker read the plan from the wrong end on
the second occasion. The treatment combinations
were therefore quite different from what had been
planned.

(b) In another field experiment, rows were used
for blocking even though all the fertility and
management differences were between columns.

(¢) In a large field experiment, the statistician
was assured that all the blocks would be long and
thin. A restricted-randomization scheme was there-
fore devised that ensured that it was impossible to
have a long run of plots all with high (or all with
low) levels of nitrogen. At one site, the shape of
block, and the numbering of the plots within the
block, was quite different from what the statisti-
cian was told. This resulted in a long run of plots
all with high levels of nitrogen. These particular
plots were badly affected by a fungus disease. Given
the poor lay-out resulting from the above misinfor-
mation, there was no way of telling whether the
high levels of nitrogen encouraged the disease.

(d) A statistician carefully devised a design for a
7 X 3 x 3 factorial experiment. Only when the data
had already been collected did the client reveal
that one level of the first factor was a “control,” for
which all levels of the other two factors were equiv-
alent. The treatment structure was therefore 1 +
(6 x 3 x 3). A better design for this structure could
therefore have been devised.

(e) Preece (1987) recounts an experience visiting
a forestry experiment on some sloping land in
Africa. When he commented that the design did not
seem to match up with the terrain, he was told that
the experiment was designed in Rome! While it
may be reasonable to select the treatments in Rome,
and perhaps the size and type of design, the details
of the field plan should surely be resolved on the
spot.

(f) The final example illustrates pseudoreplica-
tion and is adapted from the examples in Hurlbert
(1984). Suppose we want to compare the decomposi-
tion rates of maple leaves on a lake bottom at
depths of 1 meter and 10 meters. Two nylon bags
are filled with an equal amount of leaves and one is
placed at each of the two depths. One month later
the amount of organic matter lost is measured.
Unfortunately the difference tells us very little as
we have no estimate of error. Thus we replicate the
experiment by putting say eight bags at each of the
two spots. This may look fine at first sight, but is
actually not much better. The difference between
the two group means will not necessarily indicate
differences due to the depths but may simply be
due to the two different spots we happen to have
picked. In other words, the depth effect
is confounded with the site effect. To carry out the
experiment properly, we need to replicate the ob-
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servations at different sites so that the estimate of
the treatment difference is capable of a unique
interpretation. Hurlbert (1984) defines pseudorepli-
cation as testing for treatment effects with an error
term inappropriate to the hypothesis being consid-
ered. In this case, you may think that it is obvious
(at least after it has been pointed out) that the
replicates are not real replicates, but in many situ-
ations it is easy to be fooled by pseudoreplication.

If the given data are not from a ‘““proper” design
or survey, but are simply historical observation
data, then the textbooks rightly say that “extra
care is needed.” What does this mean? It means
that important effects of interest may be con-
founded with nuisance factors, and there may be
biases, either in the selected sample or in the way
the data have been collected. Then careful thought
is required to see if the data have any value. Even
quite a large data set may be of limited value as
size considerations are not enough. Thus although
properly constructed observational studies can
sometimes prove useful (e.g., Cochran, 1983), at
least in providing useful pointers to check in subse-
quent studies, they can sometimes be worthless or
even positively misleading.

3.3 Analyzing the Data

Data analysis can often usefully be thought of as
having two main stages: (a) The initial examina-
tion of data (or IDA; see Chatfield, 1988, Chapter
6). This includes processing the data, checking the
quality, and obtaining simple descriptive sum-
maries, including summary statistics, graphs and
tables. (b) Carrying out an appropriate inferential
procedure. Selecting an appropriate method of
analysis will often involve formulating and fitting
a sensible parametric model, although nonparamet-
ric methods are also widely used. Finally the fit of
the model and/or the appropriateness of the proce-
dure must also be checked. We consider these two
stages in turn.

(a) The Initial Examination of Data. A thor-
ough IDA is important in any analysis, not only to
check data quality and produce a descriptive sum-
mary, but also to help in formulating an appropri-
ate model. In all these roles, IDA is particularly
helpful in avoiding trouble. IDA has many similari-
ties with exploratory data analysis (EDA), but there
are also important differences. Tukey’s landmark
book (1977) describes a variety of important tech-
niques for exploring data, but it can be criticized
for introducing too much new jargon, for omitting
standard tools such as the arithmetic mean and for
failing to emphasize the importance of using the
initial data analysis to formulate an appropriate
model and hence choose an appropriate inferen-

tial method. Thus Tukey’s approach has not al-
ways been integrated with the rest of statistics,
and this explains my alternative choice of title
(Chatfield, 1986).

The first step is to assess the structure of the
data, particularly the sample size (are there enough
observations to satisfactorily answer the given
questions?), the number of variables (are any
important variables missing?) and the type of
variables. Many mistakes are caused by failing to
distinguish between the different types of measure-
ment scale (nominal, ordinal, interval and ratio),
and in particular between count and measured data.
For example, a company that produced y meters of
a certain material each shift, of which w meters
were scrap, set up a control chart scheme under the
assumption that w was a binomial variate because
w and y were recorded as integers. In fact, they
were measured variables, albeit rounded to the
nearest integer. As a result the calculated control
limits were much too wide.

Data are increasingly made available in the form
of a data base over whose construction the statisti-
cian may have little or no control. Rather the data
base is likely to be managed by a computing de-
partment of some sort. Then it is particularly im-
portant to assess the structure and quality of the
data, and better software is needed for handling
large data bases and carrying out routine checks on
them. An even more difficult problem arises when
the statistician does not have access to the data
base, but rather is given a sample and has to find
ways of checking that the sample is representative.
This is not easy; see the Prelude and Example 3(a).

Of course, checking data quality is important for
any data set and may be effected by a variety of
data-snooping techniques such as that described by
Preece (1981) for looking at the distribution of final
digits in order to check on the recording procedure.
One feature which often gives trouble is the treat-
ment of missing observations as already demon-
strated in the Prelude. As a second example, I was
asked to analyze some daily stock prices. Close
inspection revealed that the values for public holi-
days had all been coded as “999” and these had to
be removed or replaced before the data could be
analyzed as an “ordinary” time series.

Another feature that can give trouble is the pres-
ence of outliers. Knowing when to adjust or remove
an apparently extreme observation is something
of an art. Do not forget that a large residual
may result from a wrongly specified model rather
than from an error or from a genuine extreme
observation.

The next important task is to produce a descrip-
tive summary of the data. Lack of space prevents a
repetition of the many helpful guidelines available
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(see, e.g., Chatfield, 1988, Section 6.5). While ap-
parently “simple,” these descriptive summaries are
not as easy to produce as they seem and are often
done badly. For example, graphs are produced with
poorly labeled axes or no title, summary statistics
are tabulated with far too many significant digits
and hideous computer tables are reproduced with
no thought as to how they might be improved.
Figure 1 shows an example of a poor time plot
produced by a computer package. Note the peculiar
intervals chosen to divide the vertical scale, the
hideous labeling of the horizontal axis and the
failure to name the dependent variable. This graph,
bad as it is, is unfortunately all too typical of much
computer output, particularly from PCs and em-
phasises the need for packages which allow the
user to control the parameters of a plot.
It is even more regrettable that graphs with simi-

lar characteristics to Figure 1 sometimes get -

published.

As another example, a published paper analyzed
a time series of 349 observations and listed them
in an appendix using horrendous E-format. The
first four observations were listed as 0.572000
E + 03,0.544000E + 03,0.521000E + 03, 0.548000
E + 03,... and so on. All the numbers ended in
“000E + 03.” Why use 3 digits (e.g., 572) when
you can fill more journal space with 12 digits!!? It is
hard to see how tables like this, or graphs like
Figure 1, are passed for publication by referees and
editors.

(b) Inference. Mistakes can arise during the in-
ferential process in a variety of ways. The analyst
may use the wrong technique, or use the right
technique but carry it out incorrectly, or use the
right technique but adopt an inflexible approach
that does not allow for suspect data or other pecu-
liarities. Other problems arise when the data are
really not good enough to answer the given ques-
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Fic. 1. An example of a poor graph produced by a computer
package.

tion, although the statistician should nevertheless
be prepared to do his best with inadequate data.

Choosing the wrong technique happens more of-
ten than might be expected, not only by nonstatisti-
cians (see, e.g, Gore, Jones and Rytter, 1977),
but also by statisticians. While we may be able to
use a given technique correctly, the result of
a technique-oriented training can make us poorly
equipped to choose the most appropriate method.
In fact, the first reaction to the “solution” of a
problem may well be the wrong reaction, particu-
larly if an IDA has been omitted.

Even when the right method is chosen, it may
still be carried out incorrectly. The possibility of
performing the arithmetic wrongly should become
less of a problem given the spread of good computer
software (but it is still advisable to check that the
“answers” are of the right order of magnitude).

. Failure to understand and control sophisticated

software is becoming a more common problem, and
it is therefore important to choose software with
desirable features, such as good documentation and
easy data-editing.

Mistakes unassociated with the computer are also
possible. In particular, it is possible to be misled by
incorrect formulas in the literature (see Example
7), while the derivation and interpretation of P-
values is particularly prone to error. Computer
output could perhaps be better designed to avoid
the latter problem and also to avoid giving undue
emphasis to the results of significance tests rather
than to the estimation of effects. The overemphasis
on significance tests has, for example, led to publi-
cation bias (Begg and Berlin, 1988), wherein stud-
ies with positive results are more likely to be
published than negative ones. The idea of looking
for significant sameness deserves more emphasis as
statisticians devote excessive attention to single
data set problems rather than seeing whether an
interesting effect will generalize to different
situations.

Implementing the right technique in an inflexi-
ble way can be just as damaging. For example, the
failure to identify an outlier can wreck the ensuing
analysis (e.g, see Example B.1 in Chatfield, 1988),
while failure to plot the data may lead to fitting
an inappropriate model (e.g., in an overrigid
Box-Jenkins time-series analysis as described by
Chatfield and Schimek, 1987). These examples
illustrate the types of mistake that can arise from
an inadequate IDA and remind us that an IDA is
needed, not only to summarize data, but also to
help formulate an appropriate model and hence
select an appropriate method of inference.

Some further general advice is as follows: (a) Be
prepared to try more than one type of analysis. (b)
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Be prepared to make ad-hoc modifications to a
standard analysis. (c) Be willing to seek help where
necessary. (d) Be prepared to use lateral thinking.

Model-Building. Many analyses depend on an
assumed parametric model. Thus model-building
(e.g,. Gilchrist, 1984; Edwards and Hamson, 1989)
is a crucial part of problem-solving and consists,
not only of modelfitting, but also of formulating
the model in the first place and then checking it
afterwards. It is unfortunate that most textbooks
concentrate on the easy estimation stage, when
trouble is more likely to occur at the earlier specifi-
cation stage or at the later validation stage.

A case study with realistically messy data, illus-
trating the difficulties involved in fitting a multi-
ple regression model to data with as many as 20
variables, is provided by Janson (1988) and the
subsequent discussion is also well worth reading.
Unthinking use of robust procedures may actually
increase the chance of model misspecification.

Some other general points on model-building are:
(a) Many subjective choices may be involved in
building a model. (b) Don’t try to model without
understanding the nonstatistical aspects of the sys-
tem under study. (c) Don’t throw out variables just
because they are nearly co-linear. (d) Don’t throw
out observations just because they are influential
or have high leverage (Belsley and Welch, 1988).
(e) Don’t extrapolate the model outside the range
over which it has been fitted (see Example 8).

Model specification depends on a variety of inputs
including the results of the IDA, a priori subject-
matter knowledge and experience. Even so, certain
assumptions may need to be made (e.g,. Edwards
and Hamson, 1989, page 73). Subject-matter knowl-
edge is particularly vital (e.g., which variables
should be included and in what way?), but often
ignored, although specialist knowledge can occa-
sionally be prejudicial (see Example 6).

Model-checking is another vital phase. After fit-
ting a model, a residual analysis is carried out and
the model assumptions checked as far as possible.
There are also various more general questions to
donsider when evaluating a model. Has anything
important in the data been overlooked? Are there
alternative models that fit nearly as well but lead
to substantially different conclusions? Does the
model really provide an adequate description of the
data? This is the time to consider modifications to
the model and iterate toward a satisfactory end
result (e.g,. Gilchrist, 1984, Part VII). An ability
and willingness to iterate is an essential attribute
of a good statistician. The choice between models
that fit approximately equally well should, where
possible, be based on external considerations. If
none are available, then some other practical,

data-based criterion should be considered. For ex-
ample, the choice between ARIMA time-series mod-
els with low but approximately equal values of the
AIC should probably be made, not on which hap-
pens to give the minimum AIC, but on which gives
the best forecasts of the most recent year’s data.

The topic of forecasting provides a good illustra-
tion of the potential dangers involved in placing too
much credence on a model. Model-based forecasts
rely on the inbuilt model assumptions and involve
extrapolation, which, while an inherent unavoid-
able feature of prediction, is well known to be
unwise in other situations (see (e) above). Schnaars
(1989) discusses many business and economic fore-
casts that have gone wrong in the past and sug-
gests ways of avoiding similar mistakes in the
future. One recommendation for long-term forecast-
ing is to avoid giving a single point forecast, or
even a single prediction interval, as this will de-
pend on a single model and hence on a single set of
assumptions. Instead a range of forecasts, based on
different assumptions, is advisable (called multiple
scenarios in the trade!). A similar point was made
much earlier by Schumacher (1973) when he sug-
gested long-term feasibility studies rather than
“presumptious” long-term forecasts. Another sug-
gestion for avoiding over-optimistic forecasts, sup-
ported by empirical results rather than theory, is to
damp the trend as proposed by Gardner and
McKenzie (1989). The main point is not to be
blinded by a sophisticated model. An assumption is
still an assumption, and extrapolation is still
extrapolation!

3.4 Communicating the Results

After analyzing the data, the statistician faces
the tricky task of interpreting the results and then
communicating the conclusions to interested par-
ties. This usually involves writing a report. The
outcome of the project may well be judged by what

. is written rather than by what has actually been

done. This is a disturbing thought given that many
people have difficulty in expressing themselves in
writing. Thus another potential pitfall is to write
an inadequate, incomplete or incomprehensible
report.

Many publications (e.g., Ehrenberg, 1982;
Gowers, 1986) have given advice on report-writing.
Here I simply make the following points in brief:
(a) Write simple clear English in short sentences.
(b) If you have trouble getting started, jot down all
the points you wish to make, not necessarily in the
right order. Revising a draft, however sketchy, is
much easier than writing the very first version. (c)
Do not assume your reader knows more than
he actually does. (d) Give extra attention to the
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presentation of graphs and tables. Don’t just in-
clude undigested computer output, which may be in
a quite unsuitable form. Don’t be afraid to use
correcting fluid and hand-writing to modify com-
puter output if necessary, although it is better to
use software that allows the user to control the
output as required. (¢) Revise the report several
times. If possible get someone else to read it and
make comments. Given these simple guidelines,
there is no reason why anyone should fail to pro-
duce an adequate report, however inadequate they
may feel.

Occasionally you may have to summarize your
results with an oral presentation. Many people find
this prospect even more terrifying than writing a
report, giving another way that a project may be
sabotaged at a late stage. Some sort of visual aid is
usually essential and the overhead projector is most
commonly used. If you have not used one before,
then some practice is necessary. A common mis-
take is to write too much material on one trans-
parency so that it becomes visually off-putting or
even illegible. Word processors now allow the easy
production of good quality printed transparencies.
Practice the whole lecture, including the use of
visual aids, with an audience of at least one person.
Time this practice session so as to ensure that you
take no more and no less than the time allotted to
you.

4. EXAMPLES
Through mistakes we can learn the truth
[Ancient Chinese proverb]

This section presents some additional examples
to illustrate practical problems and give some indi-
cation as to how these may be avoided or overcome.
Most published examples are sanitized or over-
simplified versions of the “real thing” and so pre-
sent a false picture of real-life statistics. Textbook
examples are typically small-scale and selected pri-
marily to illustrate a particular technique, while
examples in journals tend to be too brief to be
helpful. The iterative nature of real statistical
analysis often fails to be evident. In particular,
authors customarily avoid mentioning mistakes,
blind alleys and other problems, partly to save
space (perhaps at the insistence of an editor), partly
to avoid the author’s blushes and partly because
“the reader will not be interested.” In fact, I sus-
pect the reader would often be interested to hear
more about problems and how they were overcome,
because we learn more from mistakes (our own and
other people’s) than from straightforward suc-
cesses. As Greenfield (1987) says, many stories
about consultation are “tales of woe. But these are
where the lessons are to be learned.” Thus my

examples are not only honest, but also inevitably
somewhat personal or anecdotal in nature. I hope
the reader will regard this as a plus rather than a
minus.

Examples 5 and 6 demonstrate the importance of
asking questions and clarifying objectives. Exam-
ple 7 highlights the dangers of believing formulas
published in the literature, while Example 8
considers the Challenger space shuttle disaster.

Further examples of real-life problems can be
found for example in Cox and Snell (1981),
Anderson and Loynes (1987) and Chatfield (1988),
although these references do not specifically con-
centrate on avoiding trouble. The data sets in
Andrews and Herzberg (1985) were deliberately
chosen to exclude examples where there was a
complete or obvious approach.

ExampLE 5. Getting Background Information.
Tackling a statistical problem “at a distance” can
be very difficult. Direct contact with the people
involved in formulating the problem and collecting
the relevant data is clearly desirable. This example
presents an extreme, and arguably unwise, situa-
tion where the statistician (me!) was very detached
from the problem. Nevertheless it has some in-
structive features. The 2nd Anglo-French Data-
Analysis Workshop was held in September 1988
primarily to compare the English and French ap-
proaches to data analysis. All delegates, including
myself, were sent four sets of data (by e-mail),
together with some background information and
asked to analyze at least one of them. When I came
to look at the data sets, I soon realized that I had
inadequate information to satisfactorily analyze
any of them. This supports my view that the most
important question in data analysis is usually not
“What techniques should be used here?”’; rather
the analyst should ask questions such as: (a) What
are the objectives? (b) What background informa-
tion is needed to tackle the problem? (¢c) What
background knowledge is already available (e.g.,
from previous data sets, or background theory)?

To illustrate the point, I focus attention on the
data-set concerned with the relationship between
childrens’ height and age. The only information
provided was that shown in Figure 2.

Three illustrative lines of data are shown and the
rest of the data are available from the author by
e-mail. The reader will notice that Figure 2 does
not even include an objective. Before I could com-
mence the analysis, I therefore wrote to the work-
shop organizer with a list of questions including:
(1) What is the objective of the analysis? (2) What
is the indicator variable in column 12? (3) The
information in columns 11, 79 and 80 doesn’t seem
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Data on 110 boys from S.E. England

Data are longitudinal...yearly measures of height. Age measured
about 13.0 years.

FORMAT:

col;

1-4 Child I.D.

7-10 Height (mm)

11 ‘1’ if adult measure, ‘0’ if childhood measure

13-23  age

24-34 age**2

35-45 age**3

46-56 age**4

57-67 age**$S

68-78 bone age Tanner Whitehouse scale)

79 ’1’ if London subsample and adult measure, ‘0’ otherwise

80 ’1’ if London subsample and childhood measure, ‘0’ otherwise
The first two lines, and the last line, of the data file are shown below.

4 0181410 .000 .000 .000 .000 .000 .00010
4 0148601 -1.870 3.497 -6.539 12.228 -22.867 -2.00001

671 0152101 2.980 8.880 26,464 78.861 235.007 2.62000

Fic. 2. The background information supplied with the
height / age data.

to make sense. For example, child 4 in line 1 is an
adult but his age is 13 years. (4) There must be lots
of background knowledge about the relationship
between height and age. Surely we shouldn’t be
starting from scratch?

I subsequently received the following replies from
the person who provided the data set: (1) The objec-
tives of the analysis are several. Of particular in-
terest is the prediction of adult (or any other age)
height. One could also study the relationship be-
tween height and bone age, or between bone age
and age, etc. Auxologists are interested in things
such as the age of maximum height velocity. (2)
Ignore column 12. (3) The data are longitudinal
with the adult measure coming first. (4) There is
indeed a lot known about height growth (e.g.,
dJolicoeur, Pontier, Pernier and Sempe, 1988).

An offer of further help was also made. This was
potentially necessary as I did not know what an
“auxologist” was, and I did not understand the
answer to another question asking what the “bone
age Tanner Whitehouse scale” is. I wondered why
powers of age and column 12 were not removed
from the data before circulation to delegates, while
the reply to point 3 made me realize that, for
adults, zero age is to be regarded as a missing
value. (In fact, the adult measures do not always
come first in the data.)

I was now in somewhat better shape to analyze
the data. Even so, with several outstanding queries
and little experience in this area, I had little idea
as to what sort of formal analysis to apply. I there-
fore contented myself with plotting (height/adult
height) against age to get a series of S-shaped
curves for different children. This gave me some
feel for the data. At the workshop, one delegate
who was expert in the given subject area made a
much more satisfying job of analyzing the data,
thus confirming the need for specialist knowledge.

I also raised various queries about the other
three data sets but found them equally difficult to

analyze satisfactorily. One particular problem arose
for some Australian migration data, where the pop-
ulation figures were stated to be in units of 1,000.
In fact reference to an atlas revealed that the units
should be 10,000s. The moral of this last point is
that you should not necessarily believe what you
are told.

My efforts in overcoming problems here can only
be regarded as partially successful, but the experi-
ence re-emphasized (a) the importance of having
direct contact with data and (b) the importance of
asking questions. As regards (a), I am reminded of
a Biometrics Society data workshop where several
people analyzed some measurements on apple trees.
Only after all the analyses had been presented did
the data-author reveal that the orchard was actu-
ally in two parts with one containing older trees
than the other. This late divulgence of crucial in-
formation caused some annoyance! As to (b), I was
surprised to learn from the workshop organizer
that no other delegate had raised any queries. Is
this because other delegates did not take the analy-
ses seriously, or does it indicate a real reluctance to
ask searching questions?

ExampLE 6. What is the Problem? This example
demonstrates how easily the analyst can “go off in
the wrong direction.” Plain warp-knitted fabrics
are made from dyed yarn in a standard range of
about 30 shades. The dye recipes were mostly mix-
tures of red, yellow and blue dyes, and there were
about half a dozen dyestuffs of each hue in use.

Factory staff had observed a large, consistent
variation in fault-rates between shades. They at-
tributed this to one or more rogue dyestuffs that
were weakening the fiber and making it less able
to withstand the violent treatment that the yarn
undergoes on the knitting machines. An investiga-
tion was therefore undertaken to identify the rogue
dyestuff(s) that was causing the increased fault
rate.

One statistician performed a multiple-regression
analysis with fault rate as the dependent variable
and the dyestuffs as the explanatory variables in
various forms. All that emerged was that blue
dyestuffs as a group were good (associated with low
fault rates), while reds were bad and yellows were
intermediate.

A second statistician then decided to investigate
a completely different hypothesis, namely that high
fault rates were associated with the darkness of the
color rather than with a particular rogue dyestuff.
He made paired comparisons between each shade
and every other shade, using shade cards, scoring
from +2 if much darker to —2 if much lighter.
Summing the scores for each shade gave an overall
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assessment of darkness for each shade. Then a plot
of fault rate against darkness score gave a very
strong negative correlation. The reason for this
could now readily be worked out. The assessment of
fault rate is subjective. It is a fault if you can see it!
A severity of damage that might be obvious in a
light shade could well pass unnoticed in a dark
shade. Thus there was actually no reason to sup-
pose there were any real differences in fault rates
or that there were any rogue dyestuffs. The
dyestuffs only entered circumstantially in that blue
dyestuffs, for example, were used predominantly in
dark shades.

While the analyst should understand the rele-
vant technology and pay due attention to what the
client knows or believes about the system, the
statistician must be careful not to let the analysis
be constrained by the client’s prejudices. The ac-
tual problem may be quite different than the one
that is posed.

ExampLE 7. Incorrect Formulas. An important
type of mistake arises from getting mathematical
formulas wrong. Such mistakes may result from a
typographical error, or from copying somebody
else’s mistake, or from some more fundamental
misunderstanding. Typographical errors necessi-
tate eternal vigilance both in checking your own
manuscripts (errors are your fault and not your
secretary’s!) and in not necessarily believing formu-
las in other people’s work. You should: check the
dimensions of a formula (Edwards and Hamson,
1989, page 60); check the result given by the
formula in a (simple) special case where you know
the correct answer; check formulas by referring to
standard texts or to an experienced statistician;
and check limiting behavior where appropriate
(Edwards and Hamson, 1989, page 74).

Virtually every textbook contains at least one
misprint and it would be invidious to pick one out
as an example, especially as they are not always
the fault of the author. The first galley proofs will
typically contain hundreds of errors and even a
99% success rate in spotting them will still leave
several errors. In any case, the publishers/printers
may fail to correct all the marked errors or may
introduce new errors while correcting the old. Nev-
ertheless some textbooks undoubtedly contain more
misprints than could reasonably be expected under
any system.

(a) I recently reviewed a text which gave the
linear regression model relating a response vari-
able, y, to an ‘independent’ variable, x, as

y=b0+b1+5.

It repeated the omission of the x variable and then
produced incorrect formulae for the estimates of b,

and b,. The poor novice reader will have difficulty
avoiding trouble with this guidance!

It would also be invidious to pick out specimen
examples of mistakes in published papers, since we
are all prone to typographical errors. However
I will give two more examples, which primarily
illustrate the potential dangers of copying.

(b) In time-series forecasting, the construction of
prediction intervals is very important. Makridakis,
Hibon, Lusk and Belhadjali (1987, Equation 1 and
the Appendix) purport to show that the variance of
the k-steps-ahead error is equal to k times the
variance of the one-step-ahead error under certain
assumptions, notably that the forecasting method
is optimal so that one-step-ahead errors are inde-
pendent with constant variance. In fact the above
result, while plausible at first sight, holds only
when the underlying process is a random walk and
the apparent “proof”’ is unsound. What is really
worrying is that this incorrect formula has already
been cited in several subsequent publications (e.g.,
Lefrancois, 1989) and seems set fair to become part
of time-series folklore.

(¢) This cautionary tale concerns stock control.
Let Y, L, D denote the demand rate per day, the
lead time, and the lead time demand respectively.
Then a well-known result, usually ascribed to Clark
(1957), is that Var(D) equals u;0% + y% 0f in an
obvious notation. A correspondent sent me a paper
(Parker, 1986) that pointed out that if D = YL
then the dimensions of the above formula are not
correct, and the alternative well-known formula for
the variance of a product should be used. I thought
this would be an excellent example for me to use
until I realized that Clark’s result was meant to
refer to the random sum of L independent random
variables, namely D =Y, + Y, + -+ +Y; and
that the variance formula is in fact correct. The
dimension counter-argument is invalid as L, the
integer number of days, is a dimensionless quan-
tity. Since Parker (1986) criticizes ‘“‘clever chaps
who write in journals,” this is a case of the biter bit
and I nearly joined him. Looking at Clark’s (1957)
proof, and at subsequent papers that misleadingly
describe {Y;} as sales rates, the confusion is under-
standable as the notation and assumptions are un-
clear. The proof is unnecessary anyway as the
result is well known in the distribution literature
when expressed as a random sum. The two lessons
of this last story are: (1) Be clear what is assumed
in any proof; (2) an apparent mistake may not be a
mistake.

ExampLE 8. The Space Shuttle Catastrophe. The
catastrophic accident to the space shuttle Chal-
lenger in 1986 was caused by a combustion gas
leak through a joint in one of the booster rockets,
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sealed by a device called an O-ring. It was subse-
quently realized that O-rings do not seal properly
at low temperatures. The night before the fatal
launch, a 3-hour meeting reviewed concern about
the effect of low temperature on O-ring perform-
ance given that the forecast launch temperature
was much lower than on previous occasions. Figure
3a shows the data available at the meeting and
plots the number of O-rings showing thermal dis-
tress against temperature at different past
launches. The meeting concluded that there was no
evidence of a temperature effect and the launch
went ahead with fatal results.

This simple analysis can be faulted in several
ways. The flights giving zero incidents were omit-
ted from the graph because these flights were
(wrongly) thought not to contribute any informa-
tion about the temperature effect. In fact, a glance
at Figure 3b, which includes the omitted data,
suggests that the latter do contribute extra infor-
mation. Dalal, Fowlkes and Hoadley (1989) go on
to estimate the probability of catastrophic field joint
failure at 31°F and show that it is indeed much
larger than at the higher temperatures of previous
launches. This latter finding depends on fitting a
logistic regression model. In fact, my first assess-
‘ment of Figure 3b noted the absence of data under
50°F and the consequential extrapolation involved
in assessing what will happen at 31°F. It may be
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Fic. 3. (a) The number of O-rings showing some thermal dis-
tress plotted against the temperature of the field joint at various
launches prior to 1986. The lower graph (b) includes flights with
no incidents.

better to say that there does seem to be a tempera-
ture effect but that any assessment of its effect
at 31°F would be dangerous when human life is
involved.

The obvious morals of this story are that any
analysis should use all the data (and especially not
a nonrandom sample), that a clear statement
is needed when a model is extended outside the
region over which it has been fitted and that
extrapolation is always dangerous.

5. DISCUSSION

The two main themes of this article are that: (1)
understanding strategy is as important as knowing
techniques and (2) avoiding trouble is complemen-
tary to, and a prequisite for, achieving optimality,
and therefore deserves at least equal attention.

Important guidelines for avoiding trouble include
the following. (a) Clarify objectives and background
by asking questions. (b) Ensure that “good” data
are collected and that they are processed satisfacto-
rily. (c) If data have already been collected, find out
how. Check their quality carefully. Is there enough
data to answer the questions satisfactorily? Have
any data been removed? (d) IDA is important in
any analysis, particularly for avoiding trouble. (e)
Don’t trust published formulas to be necessarily
correct. (f) Don’t be afraid to ask for help and
advice,

Despite all our best endeavors, wrong results
may still be published. Other people’s analyses
should be assessed both technically (e.g., Are data
adequate for what is needed? Has the right tech-
nique been used?), and also on broader questions
such as “Why was the research carried out?”’ and
“Have the objectives been fulfilled?”’. Statistical
analyses are based on assumptions and choices that
are often implicit, subjective and arbitrary, and it
is essential to find out exactly what has been done.
It is also important to check results against intu-
ition. Disagreement may reveal (a) mathematical
or arithmetical mistakes, (b) implausible or over-
simplified model assumptions, (c) inadequate intu-
ition or (more rarely!) (d) exciting new findings.
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