THREE PARAMETER GAMMA DISTRIBUTION

Define the incomplete gamma function for x > 0 as
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and the derivative of the log-gamma function as
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Let X be a random variable with the distribution function
Fy(z) =T(a; (A\x)7),

where a > 0, A > 0 and 7 > 0 are parameters. Denote X ~ TI'(a, A, 7).

The unknown parameters will be estimated using the maximum likeli-
hood method. Assume the sample is generated as independent i.i.d. random
variables X7, ..., X,,. The log-likelihood function is
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= n(atlog\+logT —logI'(a) + (a7 —1)logx — A" x7).

a. Show that the MLE satisfy the equations
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Y(a) —loga — 7logx 4 log 2™ = 0.



. From the partial derivative with respect to 7 derive that
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. Denote the right side of the equation in ¢. by ¢g(7). Show that

W(g(7)) —log(g(r)) — Tlogz +logz™ = 0,

which is an equation that only contains 7. Generate a sample of size
n = 1000 from the generalized gamma distribution and plot the graph
of the left side of the above equation. What can you say about the
uniqueness of the solution?

. Compute the Fisher matrix of information I(a, A, 7).

. Generate i.i.d. samples of size n = 1000 and estimate the parameters.
Repeat the procedure m = 10000 times. Draw the histograms for
the estimates and compute the empirical standard errors. Compare
the empirical standard errors with the ones obtained from the Fisher
information matrix.

. How would you test the hypothesis Hy: 7 = 1vs. Hy: 7 # 1?7 Generate
the distribution of the test statistic when Hy holds. Comment.



