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Instructions

Read carefully the text of the problems before attempting to solve them. Five problems
out of six count for 100%. You are allowed one A4 sheet with formulae and theorems.
You have two hours.
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1. (20) A fair die is rolled n times. The rolls are numbered by 1, 2, . . . , n and are
assumed independent. For k = 1, 2, . . . , n and l = 1, 2, . . . , n denote by Ak the event
that the k-th roll is the first one to show one dot, and by Bl the event that the l-th
roll is the last one to show six dots.

a. (10) Compute P (Ak) and P (Bl) for every k and l.

Solution: the event Ak happens if in the first k − 1 rolls there are no dots, the

first dot is rolled on the k-th roll; it follows that P (Ak) =
(
5
6

)k−1 · 1
6
. The event

Bl happens if in the last n− l rolls there is no six but it is comes up on l-th roll;

that means that P (Bl) = 1
6
·
(
5
6

)n−l
.

b. (10) Determine for which k and l the events Ak and Bl are independent.

Solution: we distinguish three cases:

• For k < l the event Ak ∩ Bl means that in first k − 1 rolls there no dots,
the k-th roll is a dot, on the l-th roll six is rolled and on last n− l rolls no

sixes are rolled. That means P (Ak ∩Bl) =
(
5
6

)k−1(1
6

)2(5
6

)n−l
, which equals

P (Ak)P (Bl), which implies that the events Ak and Bl are independent.

• For k > l the event Ak ∩ Bl means that on the first l − 1 rolls no dots
are rolled, on the l-th roll a six is rolled, and between no dots or sixes are
rolled, on the k-th roll a dot is rolled, and on last n − k rolls no sixes are

rolled. It follows P (Ak ∩ Bl) =
(
5
6

)n−k+l−1(2
3

)k−l−1(1
6

)2
, which is not equal

to P (Ak)P (Bl), so in this case the events Ak and Bl are dependent.

• For k = l the event Ak ∩Bl is impossible, so P (Ak ∩Bl) = 0, which means
that Ak and Bl are dependent events.
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2. (20) For dinner, 2n seats are arranged around a round table for n couples to be
seated. The host will seat them in such a way that men and women will alternate but
otherwise at random. You can imagine that the seats are numbered counterclockwise
by 1 to 2n. Women will be seated on seats 1, 3, . . . , 2n− 1, and men will be seated on
seats 2, 4, . . . , 2n, both at random independently of each other. We would like to find
the probability that nobody sits next to his or her partner. Denote by

Ai = {seats i and i+ 1 are occupied by one of the couples}

where 2n+ 1 is interpreted as 1.

a. (5) Compute P (Ai) for all i = 1, 2 . . . , 2n.

Solution: the spouse of the person who is seated on the i-th seat occupies any
of the n seats with equal probability (conditional on knowing who is in the i-th
seat). It follows that

P (Ai) =
1

n
.

b. (5) Compute P (Ai ∩ Aj).

Solution: if i and j are neighbouring seats, the intersection is an impossible
event. If the seats i and j are not neighbouring seats, from each of the pairs
{i, i+ 1} and {j, j + 1} there must be a seat for a woman. The husbands can be
then seated in n(n − 1) equally likely ways, out of which just one is favourable.
It follows

P (Ai ∩ Aj) =
1

n(n− 1)
.

c. In which cases is the probability P (Ai1 ∩· · ·∩Aik) different from zero? For those
cases compute the probability of the intersection.

Solution: without loss of generality, we can assume that indices i1, i2, . . . , ik are
distinct. Then the probability of the intersection of the events is different from 0
zero if and only if the pairs of neighbour seats {i1, i1+1}, {i2, i2+1}, . . . , {ik, ik+
1} are non-overlapping. The probability is computed as in the case b.: from every
pair {ij, ij + 1} one of the seats belong to a woman. The husbands can be seated
on n(n − 1) · · · (n − k + 1) equally likely ways and only one is favourable. It
follows

P (Ai1 ∩ · · · ∩ Aik) =
1

n(n− 1) · · · (n− k + 1)
=

(n− k)!

n!
.
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d. (5) Assume as known that one can choose k non-overlapping pairs of adjacent
seats among 2n seats around the table in

Sk,n =

(
2n− k
k

)
2n

2n− k

ways. Compute the probability that no two partners will sit together. You do
not need to simplify the sums.

Solution: let A be event that no couple are seated together. Using inclusion
exclusion formula one gets

P (A) = 1− P

(
2n⋃
i=1

Ai

)

= 1−
n∑
k=1

(−1)k−1Sk,n ·
(n− k)!

n!

=
n∑
k=0

(−1)k
(

2n− k
k

)
2n

2n− k
· (n− k)!

n!
.
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3. (20) Two cautious robbers A and B decide that they will go to “work” alternately
until one of them is caught in the act. Assume that the outcomes of robbeires are
independent of each other. Robber A is caught with probability a, and robber B with
probability b. Robber A goes to work the first night.

a. (10) What is the probability that robber A will be caught before robber B?

Solution: denote

Ak = {A gets caught the k-th night, before that the robberies are successfull} .

This event happens when A is successfull (k − 1)-times and B is successfull
(k− 1)-times and then A gets caught. Because the outcomes of the robberies are
independent of each other, we have

P (Ak) = (1− a)k−1(1− b)k−1a .

Events Ak are disjoint for k = 1, 2, . . ., and their union is event that A gets
caught first.

P (A gets caught before B)

=
∞∑
k=1

P (Ak)

= a
∞∑
k=1

(
(1− a)(1− b)

)k−1
= a

1

1− (1− a)(1− b)
=

a

a+ b− ab
.

b. (10) Let X be the number of robberies until one of the robbers is caught including
the last unsuccessful robbery. Compute the distribution of the random variable
X.

Solution: the possible values for random variable X are n = 1, 2, 3, . . . We have
to distinguish between even and odd n. Let n = 2k. In this case, A is successful
k-times, B is successfull (k − 1)-times and then B gets caught. It follows

P (X = 2k) = (1− a)k(1− b)k−1b .

For n = 2k − 1:

P (n = 2k − 1) = (1− a)k−1(1− b)k−1a .
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4. (20) Let the random variable X have the Weibull density given by

fX(x) =
α

σ

(x
σ

)α−1
e−( xσ )

α

for x > 0 and 0 otherwise, with α, σ > 0.

a. (10) Find the density of the random variable

Y =

(
X

σ

)α
.

Solution: notice that
FX(x) = 1− e−( xσ )

α

for x > 0. Compute for y > 0

FY (y) = P (Y ≤ y)

= P

((
X

σ

)α
≤ y

)
= P

(
X ≤ σy1/α

)
= 1− e

−
(
σy1/α

σ

)α
= 1− e−y .

It follows
fY (y) = e−y

for y > 0 and 0 otherwise, or Y ∼ exp(1).

b. (10) Let U ∼ U(0, 1). Show that the random variable

Z = σ (− logU)1/α

has the Weibull density with parameters α, σ.

Solution: the random variable Z has positive values. For z > 0 compute

P (Z ≤ z) = P
(
σ (− logU)1/α ≤ z

)
= P

(
− logU ≤

( z
σ

)α)
= P

(
logU ≥ −

( z
σ

)α)
= P

(
U ≥ e−( zσ )

α)
= 1− e−( zσ )

α

.
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5. (20) (20) Let the random variable X have the distribution

P (X = k) =

(
2n− k
n

)(
1

2

)2n−k

for k = 0, 1, . . . , n.

a. (10) Show that

n∑
k=0

(2n− k + 1)P (X = k) = 2(n+ 1)

(
1−

(
2n+ 2

n+ 1

)(
1

2

)2(n+1)
)
.

Hint: if one takes n + 1 instead of n, the probabilities in the distribution still
sum up to 1. Check that

(2n− k + 1)

(
2n− k
n

)
= (n+ 1)

(
2(n+ 1)− (k + 1)

n+ 1

)
.

Solution: compute

n∑
k=0

(2n− k + 1)P (X = k)

=
n∑
k=0

(2n− k + 1)

(
2n− k
n

)(
1

2

)2n−k

=
n∑
k=0

2(n+ 1)

(
2(n+ 1)− (k + 1)

n+ 1

)(
1

2

)2(n+1)−(k+1)

= 2(n+ 1)

(
1−

(
2n+ 2

n+ 1

)(
1

2

)2(n+1)
)
.

b. (10) Compute E(X).

Solution: from the first part follows

2n+ 1− E(X) = 2(n+ 1)

(
1−

(
2n+ 2

n+ 1

)(
1

2

)2(n+1)
)
.

It follows

E(X) = −1 + 2(n+ 1)

(
2n+ 2

n+ 1

)(
1

2

)2n+2

.
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The result can be written as

E(X) = −1 + (2n+ 1)

(
2n

n

)(
1

2

)2n

.
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6. (20) We toss n balls in r boxes where n ≥ r. Assume the tosses are independent
and we hit each box with the same probability p. Denote by X the number of empty
boxes at the end.

a. (5) Denote P (X = 0) = b(n, r) and compute this probability.

Hint: inclusions and exclusions.

Solution: denote A = {X = 0} and define

Ak = {k-th box is empty}

for k = 1, 2, . . . , r. We have Ac = ∪rk=1Ak. By the inclusion-exclusion formula
we need probabilities P (A1 ∩ · · · ∩ Ak) for all k. In other words, we compute
probability that on every toss r − k boxes are hit. The throws are independent
and it follows

P (A1 ∩ · · · ∩ Ak) =

(
r − k
r

)n
.

Because of symmetry, the intersection of any k events among A1, . . . , Ar has the
same probability, and it follows

P (A) = 1− P (Ac) =
r∑

k=0

(−1)k
(
r

k

)(
r − k
r

)n
.

b. (10) Compute the distributon of X.

Hint: what is the probability of {X = k}, conditionally on the event that a given
assortment of k boxes are exactly the empty ones.

Solution: for fixed k = 0, 1, . . . , r − 1, the empty k boxes can be chosen in
(
r
k

)
ways. Conditional on this, the balls must be tossed into the other r− k boxes. It
follows

P (X = k) =

(
r

k

)(
r − k
r

)n
b(n, r − k) =

=
r−k∑
l=0

(−1)l
r!

k! l! (r − k − l)!

(
r − k − l

r

)n
.

c. (5) Compute E(X).

Solution: Define

Ik =

{
1, if k-th box is empty
0 otherwise.
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We have X = I1 + · · ·+ Ir and the indicators have the same distribution due to
symmetry. It follows

E(X) = r P (I1 = 1) = r

(
r − 1

r

)n
.
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