
University of Primorska

FAMNIT, Mathematics

Probability

Exam

August 20th, 2018

Name and surname: Identification number:

Instructions

Read carefully the text of the problems before attempting to solve them. Five problems
out of six count for 100%. You are allowed one A4 sheet with formulae and theorems.
You have two hours.

Problem a. b. c. d.

1. • •
2. • •
3. • •
4. •
5. • •
6. • •
Total

SO
LU

TIO
N
S



Probability, 2017/2018, M. Orel, M. Perman, A. Zalokar

1. (20) We select a subset of size n out of a set of size N with replacement and
repeatedly r-times. Every subset is equally likely to be selected. Subsequent selections
are independent of each other..

a. (5) What is the probability that a given fixed k elements are contained in every
subset selected?

Solution:

[(
N−k
n−k

)(
N
n

) ]r (with agreement that
(
m
s

)
= 0, when s < 0 or s > m).

b. (15) What is the probability that none of the elements are contained in every
subset selected ? You do not need to simplify the expression obtained.

Hint: define the events

Ai = {the i-th element is contained in every subset selected }.

Solution: For i = 1, 2, . . . , N let Ai be an event, where i-th element is the chosen
element in every subset. It was computed above that for arbitrary distinguish
i1, i2, . . . , ik holds

P
(
Ai1 ∩ Ai2 ∩ · · · ∩ Aik

)
=

[(
N−k
n−k

)(
N
n

) ]r .
With usage of the inclusions and exclusions one gets

P
(
Ac1 ∩ Ac2 ∩ · · · ∩ AcN

)
= 1− P

(
A1 ∪ A2 ∪ · · · ∪ AN

)
= 1−

N∑
i1=1

P (Ai1) +
∑

1≤i1<i2≤N

P (Ai1 ∩ Ai2)

−
∑

1≤i1<i2<i3≤N

P (Ai1 ∩ Ai2 ∩ Ai3) + · · ·

+ (−1)n
∑

1≤i1<i2<···<in≤N

P (Ai1 ∩ Ai2 ∩ · · · ∩ Ain)

=
n∑
k=0

(−1)k
(
N

k

)[(N−k
n−k

)(
N
n

) ]r .
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2. (20) Let consider a scyscraper with infinitely many floors numbered by k = 0, 1, . . ..
On floor 0 X0 people enter the elevator where X0 ∼ Po(λ). On every subsequent floors
the elevator stops and every individual who is still in the elevator exits with probability
1
2
, independently of the others, independently of previous exits and independently of
X0. Let Xk be the number of people in the elevator after the elevator leaves the k-th
floor for k = 0, 1, 2, . . ..

a. (10) Find the distribution of X1.

Hint: we have

P (X0 = k0, X1 = k1, . . . , Xn = kn)

= P (X0 = k0, . . . , Xn−1 = kn−1)P (Xn = kn|X0 = k0, . . . , Xn−1 = kn−1) .

Solution: By assumptions

Xn|X0=k0,...,Xn−1=kn−1 ∼ Bin

(
kn−1,

1

2

)
,

where for kn−1 = 0 we can interprate binomial distribution as a constant 0. For
k = 1 we get

P (X1 = k1) =
∞∑
l=k1

P (X0 = l)P (X1 = k1|X0 = l)

=
∞∑
l=k1

e−λλl

l!
·
(

l

l − k1

)(
1

2

)l
=

e−λ

k1!

(
λ

2

)k1 ∞∑
l=k1

(λ/2)l−k1

(l − k1)!

=
e−λ

k1!

(
λ

2

)k1
eλ/2

=
e−λ/2(λ/2)k1

k1!
.

It follows that X1 ∼ Po(λ/2).

b. (10) Let M be the number of the floor on which the last individuals in the
elevator exit. Find the distribution of M .
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Hint: find the distribution of Xm by induction.

Solution: It holds P (M ≤ m) = P (Xm = 0) for m = 0, 1, . . .. Similarly as in the
first part the induction can be used and it holds Xm ∼ Po (2−mλ), which means

P (Xm = 0) = e−2−mλ .

It follows
P (M = 0) = e−λ

and

P (M = m) = P (M ≤ m)− P (M ≤ m− 1) = e−2−mλ − e−2−m+1λ

for m = 1, 2, . . ..

4



Probability, 2017/2018, M. Orel, M. Perman, A. Zalokar

3. (20) Let random variables U and V be independent and uniformly distributed on
the interval (0, 1).

a. (10) Compute the density of the random vector (X, Y ) = (U, V (1− U)).

Solution: In transformation formula we take

Φ(u, v) = (u, v(1− u)) .

We compute

Φ−1(x, y) =

(
x,

y

1− x

)
and

JΦ−1(x, y) =
1

1− x
.

It follows

fX,Y (x, y) =
1

1− x
for x, y ∈ (0, 1) and x+ y < 1.

b. (10) Compute the density of the random variable Z = U + V (1− U).

Solution: We can use the formula

fZ(z) =

∫ ∞
−∞

fX,Y (x, z − x)dx .

In our case we integrate just on the interval where the density is nonzero. It
follows

fZ(z) =

∫ z

0

dx

1− x
= − log(1− z) .

The formula for density holds for 0 < z < 1.
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4. (20) A group of n ≥ 3 gamblers are sitting around a round table. All of them roll
their own dice once; all dice are standard (1 to 6 dots), fair (every number of dots
has equal probability) and the rolls are independent. Denote by W the number of
pairs of neighbouring gamblers at the table who roll a neigboring number of dots. The
numbers from the set {1, 2, 3, 4, 5, 6} are neighbouring numbers if their difference is 1
(3 and 4 are neighboring numbers, but 6 and 1 are not, and also 3 and 3 are not).

a. (10) Compute E(W ) and var(W ).

Hint: indicators.

Solution: We can write W = I1 + I2 + · · · + In, where Ii is indicator for the
event where i-th gambler and his right neighbour roll a neighbouring numbers.
The probability od+f this event is:

E(Ii) =
2

3
· 1

3
+

1

3
· 1

6
=

5

18
,

and

E(W ) =
5n

18
.

For computing the variance, there are two standard approaches. We can start by

var(W ) = E(W 2)−
(
E(W )

)2

and

E(W 2) =
n∑
i=1

n∑
j=1

E(IiIj) .

The random variable IiIj is an indicator of the event where for i-th and j-th
gambler holds that they and their right neighbours roll a neighbouring numbers.
For i = j the probability of this event is equal to 5/18; there are n such terms
in the above double sum. If the i-th and j-th gambler are neighbours, we are
computing the probability that the rolls of three neighbouring gamblers forms a
chain of neighbouring numbers. The probability of this event equals to

E(IiIj) =
2

3
· 1

9
+

1

3
· 1

36
=

1

12
;

there are 2n such terms in the above sum. If i and j are neither equal nor
neighbouring, the probability of this event equals to (5/18)2 = 25/324; there are
n2− 3n such terms in above sum (here we need the assumption that n ≥ 3). We
sum up and get:

E(W 2) = n · 5

18
+ 2n · 1

12
+ (n2 − 3n) · 25

324
=

25n2 + 69n

324
.

6



Probability, 2017/2018, M. Orel, M. Perman, A. Zalokar

We substract and get:

var(W ) =
23n

108
.

The result can be derived also by covariances:

var(W ) =
n∑
i=1

n∑
j=1

cov(Ii, Ij) =
n∑
i=1

n∑
j=1

E(IiIj)− E(Ii)E(Ij) .

For i = j je cov(Ii, Ij) = 5/18 − (5/18)2 = 65/324. If i-th and j-th gambler
are neighbouring, the covariance equals cov(Ii, Ij) = 1/12− 25/324 = 1/162. In
every other case it holds cov(Ii, Ij) = 0: the events that the neigbours of i-th and
the neigbours of j-th gambler roll neighboring numbers are independent. We sum
up and get:

var(W ) = n · 65

324
+ 2n · 1

162
=

23n

108
,

which is the same as before.

b. (10) Let S be the number of gamblers who roll a six. Compute cov(W,S).

Solution: We write S = J1 +J2 + · · ·+Jn, where Jj is the indicator of the event,
that j-th gambler rolls six dots. For computing the covariance of W and S there
are two standard ways again. We can set:

cov(W,S) = E(WS)− E(W )E(S)

and

E(WS) =
n∑
i=1

n∑
j=1

E(IiJj) .

The random vatiable IiIj is an indicator of the event where i-th gambler and
his rught neigbour roll neigbouring number of dots andj-th gambler rollssix dots.
Fori = j this is an event where i-th gambler rolls six dots and his right neigbour
rolls five dots; the probability of this event is equal to 1/36 and there are n such
term in the above double sum. If the j-th gambler is the right neigbour of the i-th
gambler, this is the event where j-th gambler roll six and the i-th gambler rolls
five; the probability of this event is 1/36 again and there are n such term in the
above double sum. If the j-th gambler is neither equal to the i-th and nor is his
right neighbour, the probability of this event is equal to (1/6) · (5/18) = 5/108;
there are n2 − 2n such term in the above sum. We sum up and get:

E(WS) = 2n · 1

36
+ (n2 − 2n) · 5

108
=

5n2 − 4n

108
.

It is obvious that E(Jj) = 1/6and consecuently E(S) = n/6. We substract and
get:

var(W ) = − n

27
.
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We can aigain use the approach with covariances:

cov(W ) =
n∑
i=1

n∑
j=1

cov(Ii, Jj) =
n∑
i=1

n∑
j=1

E(IiJj)− E(Ii)E(Jj) .

If i = j or the j-th gambler is the right neighbour of the i-th, it holds cov(Ii, Jj) =
1/36− 5/108 = −1/54, otherwise cov(Ii, Jj) = 0.We sum up and get

cov(W,S) = − n

27
,

which is the same as before.
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5. (20) Let X be a random variable with values in {2, 3, . . .} and with distribution

P (X = k) = (k − 1)p2(1− p)k−2

for p ∈ (0, 1). Assume as known, that for |x| < 1

∞∑
k=1

kxk =
x

(1− x)2
.

a. (10) Show that the probability generating function of the random variable X
equals

GX(s) =

(
ps

1− (1− p)s

)2

.

Solution: We compute

GX(s) =
∞∑
k=0

skP (X = k)

=
∞∑
k=2

sk · (k − 1)p2(1− p)k−2

=
p2s

1− p

∞∑
k=2

(k − 1) (s(1− p))k−1

=
p2s

1− p
· s(1− p)

(1− (1− p)s)2

=

(
ps

1− (1− p)s

)2

.

b. (10) Compute var(X).

Solution: We compute

G′X(s) = 2

(
ps

1− (1− p)s

)
· p(1− (1− p)s) + ps(1− p)

(1− (1− p)s)2 =
2p2s

(1− (1− p)s)3
.

It follows

E(X) = G′X(1) =
2

p
.

We compute

G′′X(s) = 2p2 · (1− (1− p)s)3 + 3s(1− p)(1− (1− p)s)2

(1− (1− p)s)6
=

2p2(1 + 2(1− p)s)
(1− (1− p)s)4

.
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It follows

E (X(X − 1)) = G′′X(1) =
2(1 + 2(1− p))

p2
.

We get

var(X) = E(X2)− E(X)2

= E(X(X − 1)) + E(X)− E(X)2

=
2(1 + 2(1− p))

p2
+

2

p
− 4

p2

=
2(1 + 2(1− p)) + 4p− 4

p2

=
2 + 4− 4p+ 2p− 4

p2

=
2(1− p)

p2
.
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6. (20) Let f : [0, 1] → R be integrable function and denote I =
∫ 1

0
f(x) dx and

v2 =
∫ 1

0
f 2(x) dx. The idea of the Monte-Carlo method for computing integrals is to

generate independent random variables X1, X2, . . . with uniform distribution on [0, 1]
by computer and to compute the sum

An =
1

n

n∑
k=1

f(Xk) .

a. (10) Let f(x) = x. Compute E(An) and var(An).

Solution: We compute

E(An) =
1

n

n∑
k=1

E(Xk)

=
1

n

n∑
k=1

∫ 1

0

x dx

=
1

2

and

var(An) =
1

n2

n∑
k=1

var(Xk)

=
1

n
var(X1)

=
1

n

(∫ 1

0

x2 dx−
(∫ 1

0

x dx

)2)
=

1

n
(
1

3
− 1

4
)

=
1

12n

b. (15) Let f(x) = x. Denote I = 1/2. How large should n be so that P (I−0, 01 ≤
An ≤ I + 0, 01) ≥ 0, 99 will hold?

Solution: We apply the central limit theorem. Let denote Sn =
∑n

k=1 Xk and
σ2 = var(Xk). We know that it holds E(Xk) = I = 1/2 and σ2 = var(Xk) =

11
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1/12. We can evaluate

P (I − 0, 01 ≤ An ≤ I + 0, 01) = P (−0, 01 ≤ An − I ≤ 0, 01)

= P (−0, 01 ≤ Sn − nI
n

≤ 0, 01)

= P

(
−0, 01 ·

√
n

σ
≤ Sn − nI√

nσ
≤ 0, 01 ·

√
n

σ

)
≈ P (0, 01 ·

√
12n ≤ Z ≤ 0, 01 ·

√
12n) .

It must hold 0, 01 ·
√

12n ≥ 2, 56. It follows n = 5.461.
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