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INSTRUCTIONS

Read carefully the text of the problems before attempting to solve them. Five problems
out of six count for 100%. You are allowed one A4 sheet with formulae and theorems.
You have two hours.
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1. (20) We select a subset of size n out of a set of size N with replacement and
repeatedly r-times. Every subset is equally likely to be selected. Subsequent selections
are independent of each other..

a. (5) What is the probability that a given fixed k elements are contained in every
subset selected?

N—k
(nfk)
()
b. (15) What is the probability that none of the elements are contained in every

subset selected ? You do not need to simplify the expression obtained.

r

Solution: [ (with agreement that (') =0, when s <0 or s >m).

Hint: define the events

A; = {the i-th element is contained in every subset selected }.

Solution: Fori=1,2,...,N let A; be an event, where i-th element is the chosen
element in every subset. It was computed above that for arbitrary distinguish
i1,1%9,...,1 holds

N-k\"
P(Ail mAizm...mAik) _ [(n—k)] .

()
With usage of the inclusions and exclusions one gets

P(A{NASN---NAY)

=1-Y P(A)+ Y P(A,NA,)

i1=1 1<i1<ia<N
— E P(A;,; MA, NA,)+---
1<i1 <ig<izg<N

+ (=) > P(A;, NA,N---NA;)

1<ii<ig< - <in <N

o]
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2. (20) Let consider a scyscraper with infinitely many floors numbered by & = 0,1, .. ..
On floor 0 X people enter the elevator where Xy ~ Po()\). On every subsequent floors
the elevator stops and every individual who is still in the elevator exits with probability
%, independently of the others, independently of previous exits and independently of
Xo. Let X} be the number of people in the elevator after the elevator leaves the k-th
floor for £k =10,1,2,....

a. (10) Find the distribution of Xj.

Hint: we have

P(XOZkQ,Xl :kl,...,XnIk'n)
= P(Xo=ko,...,Xpn-1=hkn1)P(Xn =kn|Xo=ko,...,Xpn-1="Fkn1).

Solution: By assumptions

where for k,_1 = 0 we can interprate binomial distribution as a constant 0. For
k=1 we get

P(Xi=k) = Y P(Xo=NP(X; =k|Xo=1)
I=k1

X))
S -k \2

A EARE Pl i

mI\2) & (k)

_ k
(AT e
kl\ 2

e M2(\/2)k
ky! '
It follows that X; ~ Po(\/2).

b. (10) Let M be the number of the floor on which the last individuals in the
elevator exit. Find the distribution of M.
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Hint: find the distribution of X,, by induction.

Solution: It holds P(M < m) = P(X,, =0) form =0,1,.... Similarly as in the
first part the induction can be used and it holds X, ~ Po (27™\), which means

P(X,=0)=e?"",

It follows

and
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3. (20) Let random variables U and V' be independent and uniformly distributed on
the interval (0, 1).

a. (10) Compute the density of the random vector (X,Y) = (U, V(1 —U)).
Solution: In transformation formula we take
O(u,v) = (u,v(l —u)).

We compute

and

It follows

Fxy(@,y) =

for x,y € (0,1) and z +y < 1.
b. (10) Compute the density of the random variable Z = U + V(1 — U).

Solution: We can use the formula

o2 = [ vtz - a)as.

In our case we integrate just on the interval where the density is nonzero. It

follows
“ dx
f2(z) = /0 -
= —log(l-—2).

The formula for density holds for 0 < z < 1.
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4. (20) A group of n > 3 gamblers are sitting around a round table. All of them roll
their own dice once; all dice are standard (1 to 6 dots), fair (every number of dots
has equal probability) and the rolls are independent. Denote by W the number of
pairs of neighbouring gamblers at the table who roll a neighoring number of dots. The
numbers from the set {1,2,3,4,5,6} are neighbouring numbers if their difference is 1
(3 and 4 are neighboring numbers, but 6 and 1 are not, and also 3 and 3 are not).

a. (10) Compute E(W) and var(W).
Hint: indicators.

Solution: We can write W = I + I, + --- + I,,, where I; is indicator for the
event where i-th gambler and his right neighbour roll a neighbouring numbers.
The probability od+f this event is:

21 11 5

El)==-=-+=--=-=—,

(%) 3 3+3 6 18
and .
n
EW)=—.

For computing the variance, there are two standard approaches. We can start by
var(W) = E(W?) — (E(W))?

and L
E(W?) =>"Y E(LI)).
i=1 j=1
The random wvariable I;1; is an indicator of the event where for i-th and j-th
gambler holds that they and their right neighbours roll a neighbouring numbers.
For i = j the probability of this event is equal to 5/18; there are n such terms
in the above double sum. If the i-th and j-th gambler are neighbours, we are

computing the probability that the rolls of three neighbouring gamblers forms a
chain of neighbouring numbers. The probability of this event equals to

21 1 1 1
ELL)=- -4 —==—;
(L:1;) 3 9 * 3 36 12
there are 2n such terms in the above sum. If i and j are neither equal nor
neighbouring, the probability of this event equals to (5/18)% = 25/324; there are
n? — 3n such terms in above sum (here we need the assumption that n > 3). We
sum up and get:

5 1 25 25n2 + 69n
EWH=n-—+2n.- — 2 _ L 2 T
W) =n-gt2n 5+ =3n) =7 324
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We substract and get:
23n

~ 108"
The result can be derived also by covariances:

var(W)

var(W) =Y > cov(l;, I;) = > Y " E(L1)) — E(I)E(I;).
i=1 j=1 i=1 j=1
For i = j je cov(I;, I;) = 5/18 — (5/18)* = 65/324. If i-th and j-th gambler
are neighbouring, the covariance equals cov(l;, I;) = 1/12 — 25/324 = 1/162. In
every other case it holds cov(I;,1;) = 0: the events that the neigbours of i-th and
the neigbours of j-th gambler roll neighboring numbers are independent. We sum

up and get:
65 1 23n
S I YO ki
var(W) =mn- 550 + 20 165 = Tog”

which 1s the same as before.
. (10) Let S be the number of gamblers who roll a six. Compute cov(W,5).

Solution: We write S = Jy + Jo+- - -+ J,,, where J; is the indicator of the event,
that j-th gambler rolls six dots. For computing the covariance of W and S there
are two standard ways again. We can set:

cov(W, S) = E(WS) — E(W) E(S)

and

E(WS) =Y > E(J).
i=1 j=1

The random wvatiable I;1; is an indicator of the event where i-th gambler and
his rught neigbour roll neigbouring number of dots andj-th gambler rollssiz dots.
Fori = j this is an event where i-th gambler rolls siz dots and his right neigbour
rolls five dots; the probability of this event is equal to 1/36 and there are n such
term in the above double sum. If the j-th gambler is the right neigbour of the i-th
gambler, this is the event where j-th gambler roll siz and the i-th gambler rolls
five; the probability of this event is 1/36 again and there are n such term in the
above double sum. If the j-th gambler is neither equal to the i-th and nor is his
right neighbour, the probability of this event is equal to (1/6) - (5/18) = 5/108;
there are n* — 2n such term in the above sum. We sum up and get:

1 5 5n? —4n
EWS)=2n-— 2 2n) - = .
(W) =2n- 55+ (" =2n) - 108

It is obvious that E(J;) = 1/6and consecuently E(S) = n/6. We substract and
get:

n

var(W) = ~97
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We can aigain use the approach with covariances:

cov(W) =) “cov(;, J;) = Y > E(LiJ;) — E(L)E(J;).

i=1 j=1 i=1 j=1

Ifi = j or the j-th gambler is the right neighbour of the i-th, it holds cov(I;, J;) =
1/36 — 5/108 = —1/54, otherwise cov(l;, J;) = 0. We sum up and get

n

cov(IV, 5) =~

which is the same as before.
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5. (20) Let X be a random variable with values in {2,3,...} and with distribution

P(X =k) = (k- 1)p*(1 —p)*?

for p € (0,1). Assume as known, that for |z| < 1

> x
ka® = .
; (1 —x)?

a. (10) Show that the probability generating function of the random variable X

equals 2
= (=)

Solution: We compute

Gx(s) = i s*P(X = k)
= ) s (k—1p*(1—p)?
= o 2 kD)t
p’s s(1 —p)

b. (10) Compute var(X).
Solution: We compute

G,X<S):2(1_ ps )_p(l—(l—p)8)+p8(1—p) - 2p*s

(1—p)s (1—(1—p)s)® C(I=(1=p)s)®”

It follows
, 2
E(X)=G%(1) = p

We compute

v o2 (L= (1=p)s)+3s(1—p)(1 - (1 —p)s)*  2p°(1 +2(1 —p)s)
Gxlo) =2 T—(—ps) ST a--ps)

9
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It follows

We get

E(X(X-1))=Gx(1) =

var(X)

2(1+2(1 -p))
p? '

E(X?) — B(X)?
E(X(X —1))+ E(X)— E(X)?
2(1+2(1 —p)) L2 4

2 o 2

p pop
20 +2(1 —p)) +4p—4
p2
244 —-4p+2p—14
p2

2(1—p)

p2

10
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6. (20) Let f:[0,1] — R be integrable function and denote I = fol f(x)dr and
v? = fol f?(z) dz. The idea of the Monte-Carlo method for computing integrals is to
generate independent random variables X, Xs, ... with uniform distribution on [0, 1]
by computer and to compute the sum

3

An = f(Xk) :

k=1

S|

a. (10) Let f(z) = 2. Compute F(A,,) and var(A,).

Solution: We compute

&
N
<
I
3=

Ol = S|

and

var(A,) = %Zvar(Xk)

b. (15) Let f(z) = x. Denote I = 1/2. How large should n be so that P(I —0,01 <
A, <1+0,01) > 0,99 will hold?

Solution: We apply the central limit theorem. Let denote S, = Y ,_, X} and
0? = var(Xy). We know that it holds E(Xy) = I = 1/2 and 0 = var(X) =

11
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1/12. We can evaluate

P(I-0,01<A,<I+0,01) = P(—0,01 <A, —1<0,01)

—nl
_ P(—0,01 < P <oo1)
:P(OO £§ L 0.01. \/ﬁ)

o \/_ o
~ P(0,01-V12n < Z <0,01-12n).

It must hold 0,01 - \/12n > 2,56. It follows n = 5.461.

12



